Asymptotic normality of the ET method for extreme quantile estimation. Application to the ET test

نویسندگان

  • Stéphane Girard
  • Myriam Garrido
چکیده

We investigate the asymptotic distribution of the Exponential Tail (ET) estimator of extreme quantiles. We give su cient conditions for the asymptotic normality and provide some illustrating examples. Then, on the basis of this result, we propose a goodness-oft test for the tail of a usual distribution. The asymptotic power and level of the test are established. Key-words: Exponential Tail, Extreme quantiles, Asymptotic distribution, Second order conditions, Goodness-oft test. CNRS, Université de Marne-la-Vallée, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2 Normalité asymptotique de la méthode ET pour l'estimation des quantiles extrêmes. Application au test ET Résumé : Nous étudions la loi asymptotique de la méthode ET (Exponential Tail) pour l'estimation des quantiles extrêmes. Nous donnons des conditions su santes pour obtenir la normalité asymptotique de l'estimateur. Ce résultat est illustré sur des classes de lois classiques. Nous mettons alors à pro t la normalité asymptotique de l'estimateur ET pour construire un test d'adéquation à la queue d'une loi usuelle. Le niveau et la puissance asymptotiques du test sont établis. Mots-clés : Queue exponentielle, Quantiles extrêmes, Loi asymptotique, Conditions du second ordre, Test d'adéquation. Asymptotic normality of the ET method 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias-reduced Extreme Quantile Estimators of Weibull Tail-distributions

In this paper, we consider the problem of estimating an extreme quantile of a Weibull tail-distribution. The new extreme quantile estimator has a reduced bias compared to the more classical ones proposed in the literature. It is based on an exponential regression model that was introduced in Diebolt et al. (2008). The asymptotic normality of the extreme quantile estimator is established. We als...

متن کامل

Extreme Quantile Estimation for Dependent Data with Applications to Finance

The asymptotic normality of a class of estimators for extreme quantiles is established under mild structural conditions on the observed stationary β–mixing time series. Consistent estimators of the asymptotic variance are introduced, which render possible the construction of asymptotic confidence intervals for the extreme quantiles. Moreover, it is shown that many well-known time series models ...

متن کامل

Evaluation of Combination Methods for Garlic Evapotranspiration Estimation

ABSTRACT-Different evapotranspiration (ET) estimation equations having different accuracy with different conditions have been developed for ET estimation. This study will firstly focus on the estimation of 13 climatic equations of daily garlic ET estimation whose  ET is measured by lysimeter to provide information which can be helpful in selecting an appropriate ET equation. The paper aims at s...

متن کامل

An Integrated Functional Weissman Es- Timator for Conditional Extreme Quan- Tiles

• It is well-known that estimating extreme quantiles, namely, quantiles lying beyond the range of the available data, is a nontrivial problem that involves the analysis of tail behavior through the estimation of the extreme-value index. For heavy-tailed distributions, on which this paper focuses, the extreme-value index is often called the tail index and extreme quantile estimation typically in...

متن کامل

Inference for Single-index Quantile Regression Models with Profile Optimization by Shujie Ma

Single index models offer greater flexibility in data analysis than linear models but retain some of the desirable properties such as the interpretability of the coefficients. We consider a pseudo-profile likelihood approach to estimation and testing for single-index quantile regression models. We establish the asymptotic normality of the index coefficient estimator as well as the optimal conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002